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1 Introduction

Breast cancer is the most frequently diagnosed malignancy among women in the United

States. In 1999, the American Cancer Society estimated that 175,000 women would be

newly diagnosed with breast cancer and that 43,300 would die from the disease [1]. Breast

cancer accounts for 29% of all cancers detected and 16% of all cancer deaths, and ranks as

the second leading cause of death from cancer among women in the United States [1]. Five

year survival rates are generally very high (93%) for breast cancer staged as being

localized, falling to 72% for regional disease and only 18% for distant disease [2]. The early

detection of breast cancer is clearly a key ingredient of any strategy designed to reduce

breast cancer mortality.

The goal of this project was to develop computerized tools that will refine the perception of

mammographic features (including lesions, masses and calcifications). Our research efforts

were geared towards improving the local mammographic viewing environment by

selectively processing mammograms for presence of different features, and towards

providing a better global mammographic viewing environment by fusing together locally

processed sections of images. By improving the visualization of breast pathology, the

chances of early detection of breast cancers can be increased (quality improved) while less

time to evaluate mammograms for most patients required (costs lowered).

We were investigating a methodology for accomplishing mammographic feature analysis

through multiscale representations. In this report, we present a scheme for local

enhancement and fusion of clinically significant features. We devised a wavelet transform

that is flexible enough for incorporation of a variety of enhancement methods and used the

derived wavelet framework for enhancement of microcalcifications, circumscribed masses,

and stellate lesions.

In the following sections, we briefly overview the contents of the report, list publications,

and explain notation that we use.

1.1 Overview of Contents

Wavelet transform forms the framework of our contrast enhancement technique, and

Section 2.1 is dedicated to it. First, Section 2.1.1 motivates the use of redundant

representations instead of orthogonal and biorthogonal wavelet transforms. The transform

itself is then described in Section 2.1.2, while Section 2.1.3 deals with fast transform

implementations issues.

Mammographic image enhancement methods are typically aimed at either improvement of

the overall visibility of features or enhancement of a specific sign of malignancy. Section 2.2
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presents a synthesis of the two paradigms by means of image fusion. In Section 2.2.1, the

suitability of steerable dyadic wavelet transform for image fusion was compared to two

transforms popular in fusion applications, the gradient pyramid and

orthogonal/biorthogonal wavelet transform, by means of both subjective and objective

criteria. Section 2.2.2 next reports on local enhancement strategies targeting

microcalcifications, circumscribed masses, and stellate lesions.

Evaluation of our method is presented in Section 2.3. The method was compared to

histogram equalization and unsharp masking on image phantoms in Section 2.3.1 and on

phantoms blended into mammograms in Section 2.3.2. The comparisons were performed

using objective measures, but behavior of the three techniques was assessed from the

perceptual point of view as well.

1.2 Notation

We use symbols N, Z, and R for the sets of naturals, integers, and reals, respectively.

L 2 (R) and L2 (R 2) denote the Hilbert spaces of measurable, square-integrable functions

f(x) and f(x, y), respectively.

The inner product of two functions f (x) E L 2 (R) and g(x) E L 2 (R) is given by

(f(x),g(x)) = J f(x) g(x) dx.

The norm of a function f (x) E L2 (R) is defined as

Ilf 11 f J If(x) 11dx.

The convolution of functions f(x) E L 2 (R) and g(x) E L2 (R) is computed as

f * g(X) = J f(t) g(x - t) dt,

and the convolution of two functions f(x, y) E L 2 (R 2) and g(x, y) E L 2(R 2) equals

f.g(x,y) = f f (tx, ty) g(x- tx, y- ty)dtxdty.

The Fourier transform of a function f (x) E L2 (R) is defined as

00 f(x)e-wx dx,

and the Fourier transform of a function f(x, y) E L2 (R 2) is equal to

f(w", wY) = f(x, y)e-(wxx+wy) dx dy.
0 --00



12(Z) and 12(Z 2) stand for the spaces of square-summable discrete signals f(n) and

f (n, ny), respectively.

The z-transform of a discrete signal f(n) E 12 (Z) is defined as

F(z)= E f (n)z.
n=-CC

The convolution of discrete signals f(n) E 12 (Z) and g(n) E 12 (Z) is equal to

f•g(n) = E f(m)g(n -m),
M=-00

and the convolution of discrete signals f (n, ny) E 12(Z 2) and g(nx, ny) E 12(Z 2) is given by

f , g(n•, ny) = E E f (m, my) g(n. - m•, ny - my).
mz=-Co my=--C

The Fourier transform of a discrete signal f(n) E 12(Z) is equal to the z-transform

evaluated on the unit circle

F(w)= • f(n)e-j3n,
22=-CC

and the Fourier transform of a discrete signal f(n•, ny) E 12 (Z 2 ) is defined as

~j fnx n) ej(wxnx+wyny.
F(w•,wy)= _ f (n•,ny) e-j('•••

nx=-- ny----C

For later use, we define the following functions:

1. the unit impulse function

6"(X) : 1 for x = 0
1uX): 0 otherwise,

2. the unit step function
U() 1 for x >_ 0
u 1): 0 for x <0,

3. the rectangular function

1 for IxI <
rect(x) for Ix>

4. the sinc function
__sin (7rx)

sinc(x) . 7- , and

5. the unit impulse sequence

(n) I for n =06(n := 0 otherwise,

where x E R and n E Z.

9



2 Body

2.1 Wavelet Transform

Wavelet transform provides the framework for both our enhancement and fusion

algorithms, and it is, therefore, important that it does not introduce artifacts, enables

directional multiscale analysis, and can be implemented efficiently. In Section 2.1.1, we

mention problems that stem from the lack of translation and rotation invariance of

orthogonal and biorthogonal wavelet transforms. Next, in Section 2.1.2, we describe

approximations of steerable wavelets and employ the multiscale spline derivatives with

both first and second derivative wavelet decomposition. Our annual reports contain details

on higher order transform derivation and implementation with reconstruction (i.e., inverse

transform) being quite cumbersome. Here presented transform allows for both directional

and isotropic processing of mammograms while being shift-invariant and aliasing-free.

Efficient implementation of the transform is highly desirable, and Section 2.1.3 presents a

filter bank with filter implementations taking advantage of symmetry and antisymmetry for

faster processing.

2.1.1 Shortcomings of Traditional Methods of Wavelet Analysis

Analyzing images across multiple scales and resolution has become a powerful tool for

solving compelling problems in computational vision, image processing, and pattern

recognition. Wavelet theory encompasses multiscale and multiresolution representations,

such as subband filtering [3], image pyramids [4], and scale space filtering [5], into a unified

mathematical framework. In the area of image processing, there remain few research areas

to which wavelet analysis has not been applied. For example, problems in image

compression, denoising, restoration, enhancement, registration, fusion, segmentation, and

analysis, have all been approached with distinct kinds of wavelet processing.

Though ubiquitous, wavelet analysis is not without problems of its own. Lack of

translation invariance, one of the major problems of the wavelet transform [6], is in

multiple dimensions accompanied with lack of rotation invariance.

Wavelet transform in its most commonly used orthogonal or biorthogonal forms is not

translation and rotation-invariant. By translation-invariant transform, we mean a

transform that commutes with a translation operator. Since we will deal primarily with

discrete transforms in this work, we constrain the translation parameter to integer

multiples of a sampling period.

Lack of translation invariance of the discrete wavelet transform is illustrated in Figure 1.

Here, we can clearly see how a translation of the input signal by one sample results in a
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completely different set of transform coefficients (orthogonal wavelet DAUB4' [6] was used

in this experiment).

Noninvariance under translations of an orthogonal and biorthogonal wavelet transform is

due to lower sampling density at coarser scales.' A straightforward way of dealing with this

problem is to construct a redundant transform by using the same sampling frequency for

the input signal and all scales of the transform. A filter bank implementation of such a

transform, called "algorithme A trous" [7], is based upon the fact that downsampling

followed by filtering is equivalent to filtering with the upsampled filter before the

downsampling, as shown in Figure 2.

Lack of rotation invariance is another shortcoming of traditional (i.e., orthogonal and

biorthogonal) wavelet techniques. In defining rotation invariance, we are a bit less strict

than with translation invariance. We do not require that the transform commutes with a

rotation operator here. Even in the case of a simple filtering, this would limit us to

circularly symmetric filters only. Our requirement for analysis is a transform that enables

rotation-invariant processing. As an example of such a transform, let us consider filtering

with the first derivative of a two-dimensional Gaussian probability density function in two

directions, specifically, along x and along y-axis. By linearly combining the results of

filtering in these two directions, filtering with the first derivative of a Gaussian in any

direction can be computed. This fact was used by Canny [8] for edge detection. A

determined edge direction rotates as an input image is rotated.

After choosing the fundamental properties of the transform, one must decide upon the

basis functions to be applied. For our studies, we selected basis functions that well

approximated derivatives of a Gaussian, because (1) the Gaussian probability density

function is optimally concentrated in both time and frequency domain, and thus suitable

for time-frequency analysis, (2) higher order derivatives of a Gaussian can be, similar to

the first derivative, used for rotation-invariant processing [9], and (3) the Gaussian function

generates a causal (in a sense that a coarse scale depends exclusively on the previous finer

scale) scale space [10]. The last property makes possible scale-space "tracking" of emergent

features.

'Th number in DAUB4 refers to twice the order of the wavelet (i.e., two in this case).
2 1In practice, since analysis is performed over a finite range of scales, a discrete wavelet transform is

translation-invariant by translations determined by the coarsest scale (e.g., sixteen samples for the analysis
from Figure 1) [6].
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(a) (b)

Figure 2: Filter bank implementation for (a) a discrete wavelet transform and (b) "algorithme
h trous" decompositions for three levels of analysis.

2.1.2 Multiscale Spline Derivatives

We define a steerable dyadic wavelet transform of a function s(x, y) E L2(R 2) at a scale

2mM E Z, as [11]

whr (x y) denote -), (

where ?•m(xy) denotes ' 2 m(x,y) rotated by 0i, 02'2m(x,y) = 22 m(2-mx, 2-my), V)(x,y) is

a steerable wavelet that can be steered with I basis functions, and Oi = -Y¾r with

i E {1, 2, ... , I}. (For introduction to steerability, please refer to our first annual report.)

Analogous to the one-dimensional case, we require the two-dimensional Fourier plane to be

covered by the dyadic dilations of ýi(2mwx, 2mwy): there must exist A 3 > 0 and B 3 < co

such that

A3 <• E E pi(2mwx, 2mw )12 < B 3  (2)
M ----- 0 i----

is satisfied almost everywhere.

If (nonunique) reconstructing functions X'r (x, y) are chosen such that their Fourier

transforms satisfy

E EZýi(2mwx, 2m wy) ýi(2mwx' 2m wy) = 1, (3)

rM=-00 i=1

the function s(x, y) may be reconstructed from its steerable dyadic wavelet transform by

00 I

S(Xy)W 8 *X2m(XY), (4)
m=-0o i=1

where Xým (x, y) denotes X2m (x, y) rotated by Oi and X2m (X, y) = 2 - 2mX(2-mx, 2-m y).

13



We choose wavelets that are steerable analogs to the one-dimensional derivatives of central

B-spline wavelets [12]:

V(w,, WO) = (jwr cos(wo))d (sin( )) p+d+(5)

where Wr = w Y + , w, = arg(wx, wy), and d E {1, 2}. These wavelets can be steered with

d+ 1 basis functions.

Wavelets (5) are equal to d-th order derivatives of circularly symmetric spline functions in

the direction of x-axis (note that knots for these splines are circles). To implement the

transform efficiently, we approximate the wavelets with x-y separable wavelets

=dd/3P~d(X) (6)

O(x'y) =- dxd p+d Y), (6)

where tip(x) denotes the central B-spline of order p.

Based on the fact that B-splines tend to a Gaussian probability density function as their

order increases, it is easy to see that both wavelets (5) and (6) converge to the same

functions (i.e., d-th order derivatives of the normalized Gaussian in the direction of x-axis)

as p -+ oo. In order to steer wavelets O(x, y) given by (6) (note that steering will be only

approximate, since these wavelets are not steerable), we need to find basis functions that

will approximately steer O(x, y). To accomplish this, we take advantage of the property of

circularly symmetric functions that rotations of their directional derivatives are equal to

directional derivatives in rotated directions:

o{ Od (X, y) } d odC(x' Y)
0 aild '9 _

where 7Z0o stands for rotation by 00, ) - if V'c(X, y), ec(x, y) is a circularly symmetric

function, and n0o denotes vector n = (cos 0, sin 0) rotated by 00.

Let us choose

(X Y) =

which is approximately circularly symmetric function for higher order splines. A rotation of

O(x, y) = adO(x'Y) from Equation (6) by 00 can therefore be approximated by

tOd(Xx, _ d d n nidni d P/p+d(x) dz/3p+d(y) (7)
E0 (x yx _ d0dd i---- i ( x dyi

where n = (cos 00, sin 0o) = (nx, ny). (Note that in case of Gaussian, which is both x-y

separable and circularly symmetric, Equation (7) becomes exact.)

14



To derive an algorithm for the fast computation of the transform, we introduce two

smoothing functions such that

001

(, IWy) ((w, wy) = E E (2 , 2t-w) ý'(2m'w, 2'wy). (8)
m=0 i=1

Using a set of basis functions (7) that approximately steer wavelets (6), we want to

construct a transform such that Equations (1) through (4)and (8) will be valid (superscript

i must be viewed now as an index, rather than rotation by 0i).

Let F(w) be a digital filter frequency response and let us denote

Fv(w) = ei"SF(w)

with s being a filter dependent sampling shift needed to obtain finite impulse response

(FIR) filters.

In frequency domain, we can express basis functions from (7) as

Si+1(wXwy) = Gd-•i(wx)G,(wyd i E {0, 1, 2}, (9)

where Gd(w) is given by

Gd(w) - eiWS 2jsin , (10)

where d is the order of the derivative, d E {1, 2}, the sampling shift for filter (10) is

8 = dmod2 ,and G°(w) -1.

Since we are interested in the first and second derivative wavelets, we impose

(W Y X Y = 4= (X P(Y

and choose

flw.,wy) = K2(wx)T(wy)4p(wx)4p_2(wy), (11)

2(WX,) = ()K; (•)4p_ (•)•_ (•), (12)

j'(wx,wy) = T(wx)K2(wy)4p_2(wx)4p(Wy), (13)

where

Kd(w)- (2)a (e-iws sin (2)) ( 2 (cos ( (14)

with the sampling shift for Kd(w) being the same as the one for Gd(w), and

T(w) = IH(w)12  (15)

15



with

H(w) = e ( Cos (16)
the sampling shift for H(w) being s = ( mod2

2

Using the relation derived in the previous report

/3(2w) = H-s(w)/p(w) (17)

together with Equations (9) and (11) through (13) with Equation (8) results in

G2 (wx)K 2 (wx)T(wy) + G1 (w.)Kl (w,)Gl(wy)K 1 (wy) + T(w.)G 2(wy)K 2(wy)+

+IH (w.) H (wy)[ 1.

Next, we derive a filter bank implementation of the transform. Assuming a bandlimited

input signal 9(wx, wy) = 0 for jwjI > 7" or lwyI > 7r and using Shannon's sampling theorem in

two dimensions [13] with Equation (1) and basis functions from Equation (9), we can write

Wl,(XY)= ) f s(ix,,iy)sinc(tx - ix)sinc(ty - iy)"
F -00~i.OiY=-OO

00 00

t.gxg - M.) E 9i (Mny)f3p+d-i(y - ty m-Y) dtx dty,
mX=-oo my,=-oo

where i E {0, 1, 2} as in Equation (9).

We approximate sinc functions with r-order cardinal splines, then use the relation between

cardinal and B-splines
00

i=-00

and get
.•{ w~m 8X, y x~n•y~n •--S (wx, way) B-r1 (0x) B;r1 (wy) Bp+,+i+ l(~)

-'71 W~mS X f )lx n,~fy~n X

m-1"*Bp+r+d-i+l(wy) Gd-i (mwH) G' nw xf4P+d-ign " •(18

n=O

where B,-1 (w) denotes the Fourier transform of the direct B-spline filter of order p. Table 1

shows the z-transforms of direct B-spline filters for the first ten orders.

Using Equation (18) with an approximation Bp+r+i+l(W) 2- Bp+r(w)Bi(w), we can obtain a

filter bank implementation of the transform decomposition. The reconstruction part

follows from Equations (8), (9), and (11) through (13). Figure 3 shows a filter bank

implementation of the transform. Noninteger shifts at scale 1 are rounded to the nearest

integer. Tables 2 through 5 list impulse responses of the filters used in the filter bank for

p E {0,1,2}.

16



Table 1: Transfer functions of direct B-spline filters for orders from 0 to 9.

2 8
z+6+z-

1

3 6
z+-4+z-1

4 384
4 ~Z 2+76z+230+76z 1l+z-2

5 120
5 ~Z 2 +26z+66+26z'l+z- 2

6 46080
Z3 +722Z2 +10543z+23548+10543z-1+722z- 2 +Z-

3

7 5040
Z3+120Z2 +1191z+2416+1191z'1 +10Z-

2 +Z- 3

103219208 Z4+6552Z 3 +331612Z 2 +2485288z+4675014+2485288z'1 +331612z- 2+6552z- 3 +Z- 4

9 362880
9z 44-502Z3 +14608Z 2 ±88234z4-156190±88234z- 1 ±14608z-2 502z 3 ±Z-4

(a)

(b)

2mcI

Q,(2 mcox) qp(mwo)

(c) (d)

Figure 3: Filter bank implementation of multiscale spline derivatives for m E [0, M - 1]: (a)
Prefiltering, (b) postfiltering, (c) decomposition module, and (d) reconstruction module.
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Table 2: Impulse responses g1 (n) and g2 (n).

n g'(n) g2 (n)
-1 1 1

0 -1 -2
1 1

Table 3: Impulse responses h(n), k1 (n), k2 (n), and t(n) for p=0.

-1 0.5 0.25

-1 hn 0.2 -0.062 
-0025n 

0.25

0 0.5 -0.25 -0.25 0.5

1 0.25 0.25

Table 4: Impulse responses h(n), k'((n), k2((n), and t(n) for p 1.
n h(n) k1 (n) k2 (n) t(n)

-2 0.0625
-1 0.25 -0.0625 -0.0625 0.25

0 0.5 -0.3125 -0.375 0.375
1 0.25 0.3125 -0.0625 0.25
2 0.0625 0.0625

Table 5: Impulse responses h(n), k' (n), V (n), and t (n) for p=2.

n h (n) k' (n) V2(n) t(n)

-3 0.015625
-2 0.125 -0.015625 -0.015625 0.09375
-1 0.375 -0.109375 -0.125 0.234375
0 0.375 -0.34375 -0.46875 0.3125
1 0.125 0.34375 -0.125 0.234375
2 0.109375 -0.015625 0.09375

3 0.015625 0.015625
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(a) (b)

Figure 4: Spline derivatives in the x-axis direction. (a) Wavelet equal to the first derivative
of a quartic spline. (b) Wavelet equal to the second derivative of a quintic spline.

The derived transform enables both second derivative directional analysis and Laplacian of

Gaussian approximations across dyadic scales (the latter can be obtained through
summation of the outputs from blocks G=(2mw) applied along x and y axis). Furthermore,

addition of a block G1_(2mw) at each level of decomposition allows first derivative
directional analysis as well. Figure 4 shows first and second derivative wavelets obtained as

linear combinations of cubic B-splines.

2.1.3 Filter Implementations

Since all two-dimensional filters used in the filter bank implementation of the transforms

are x-y separable, only one-dimensional filters need to be implemented. We describe the
implementation of finite impulse response (FIR) filters first and then treat prefiltering and

postfiltering infinite impulse response (JIR) filters from Figure 3(a) and (b).

Let us refer to filters applied at scale 2' as filters at level m+1, and let filters at level 1

(Equations (10), (14), (15), and (16) be called "original filters," to distinguish them from

their upsampled versions. Let us split the input to the filter bank from Figure 3 into image

matrix rows and columns, each corresponding to a real signal s(n) e 12(Z), n E [0, N - 1].

Depending on the length of each filter impulse response, filtering an input signal may be
computed either by multiplying the discrete Fourier transforms of the two sequences or by

circularly convolving s(n) with a filter's impulse response. Using circular rather than linear

convolution, as is customary in image processing, can lead to boundary artifacts caused by
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abrupt changes in the periodically extended signal. A common remedy for such a problem

is realized by constructing a mirror extended signal [14]

= r s(-n- 1) if n E [-N,-1] (19)
smne(n) s(n) if n E [0, N - 1],

where we chose the signal sine(n) to be supported in [-N, N - 1].

Let us classify symmetric/antisymmetric real even-length signals into four types [15]:

Type I f (n) = f(-n),

Type II f(n) = f(-n- 1),

Type III f(n) =-f(-n),

Type IV f(n) =-f(-n - 1),

where n E [-N, N - 1]. Note that for Type I signals the values at f(0) and f(-N) are

unique, and that for Type III signals the values at f(0) and f(-N) are equal to zero.

(This is important for storage requirements: for signals of Type II or Type IV, N samples

need to be saved, while Type I and Type III signals require N+1 and N-1 sample

representations, respectively.)

Using properties of the Fourier transform, it is easy to show that the convolution of

symmetric/antisymmetric real signals results in a symmetric/antisymmetric real signal. If

a symmetric/antisymmetric real signal has an even length, then there always exists an

integer shift such that the shifted signal belongs to one of the above types.

Now, we are ready to examine the filter bank implementation of the wavelet transform

from Figure 3 with filters given by Equations (10), (14), (15), and (16) driven by mirrored

signals of the form smef(n) from Equation (19) at the input. Let the number of levels M be

restricted by
N-1

M < 1 +log 2 Lmax - ' (20)

where Lmax is the length of the longest original FIR filter impulse response.

Each FIR filter block in the filter bank consists of a filter and a circular shift operator.

Equation (20) guarantees that the length of the filter impulse response does not exceed the

length of the signal at any block.

Since our mirror extended input row or column Sme(n) is of Type II and noninteger shifts

at level 1 are rounded to the nearest integer, it follows that a processed one-dimensional

signal at any point in the filter bank belongs to one of the types defined above. This means

that filtering a signal of length 2N can be reduced to filtering a signal of approximately one

half of its length.
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Implementation is particularly simple for FIR filters designed with d= 2 and p odd. Filters

are of Type I in this case, so their output will be of Type II. An FIR filter block from the

filter bank shown in Figure 3 can therefore be implemented by

L-1
2

Fs,mu (n) = f(O)uii(n) + f (i)[uii(n - 2mi) + u1 1(n + 2m i)], n E [0, N - 1], (21)

where
u(-n- 1) ifrn E [-N,-1]

ull(n) = u(n) if n E [0, N - 1] (22)
u(2N- n - 1) if n E [N7 2],

u(n) is an input signal to a block, f(n) is an impulse response of G2(2mw), K 2 (2mw),

T(2mw), or H(2m w) with p odd, L is the length of the filter, and N is the length of an

input signal s(n) to the filter bank. Implementation of filters bp(n) used for prefiltering and

postfiltering (Figure 3(a) and (b)) represents a special case of Equation (21) with m=0.

A filter bank with the above implementation of blocks and signal s(n) at the input yields

equivalent results as circular convolution of input sme(in) as defined by Equation (19). In

addition to requiring one half the amount of memory, the computational savings over a

circular convolution implementation of blocks are, depending on the original filter length,

three to four times fewer multiplications and one half as many additions.

A similar approach is used for other filters. The problem becomes slightly more involved in

this case, because the filters change type from first to subsequent levels, and the signal

component type can be altered by a filter block as well. As a consequence, an

implementation of blocks that use distinct original filters may not be the same, and the

implementation of blocks at level 1 may differ from the implementation of blocks at other

levels of analysis.

The decomposition blocks at level 1 can be implemented by

_L_
2

Gl-,Ou(n) = E g(i)[uii(n - i - 1) - u1 1i(n + i)], n E [1, N - 1]
i=O

and
LY-1

H-s,oU(n) = Y h(i)[ui(n - i - 1) + uli(n + i)], n E [0, N],
i=O

for p even, where u11 (l) is defined by (22), g(n) and h(n) are impulse responses of the

filters computed from (10) and (16), respectively, and L is the length of the corresponding

impulse response.

The output from a block Gl,(w) at level 1 is of Type III, while the output from H_,(w) at

the same level is of Type I.
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The decomposition blocks at subsequent levels m E [1, M- 1] can be implemented by

_L_1
2

Glsmu(n) = E g(i)[u 1 (n - 2m (i + s)) - u1 (n + 2m (i + s))], n E [1, N - 1],
i=O

for p even,

L__1
2

Gls,mu(n) = E g(i)[u11 (n - 2m (i + s)) - u1 ((n + 2m (i + s))], n E [0, N - 1],
i=O

for p odd,

L-1

FS,mU(n) = f(O)uj(n) + f (i)[ui(n - 2mi) + ui(n + 2mi)], n E [0, N], (23)

with f (n) = g(n) for d= 2 and p even,

*__1

Hs,mU(n) = h(i)[u1 (n - 2m (i + s)) + u1 (n + 2m (i + s))], n € [0, N], (24)

for p even, where Ju(-n) if n E [-, -1]
uy(n)= u(n) if n E [0,N] (25)

u(2N - n) ifnE[N+1,3].

The outputs from blocks G-, (2mw) are of Type III for d= 1 and p even, of Type IV for

d= 1 and p odd, and of Type I for d=2 and p even, whereas the outputs from Hs(2mw)

are of Type I for p even.

Next, the reconstruction blocks at level 1 can be implemented by

L
2

Kls,ou(n) = E k(i)[uru(n - i + 1) - UlII(n + i)], ni E [0, N - 1]
i=l

and
L
2

H8 ,ou(n) = • h(i)[ui(n - i + 1) + ui(n + i)], n E [0, N - 1],

for p even, where

0 if n= 0
ulli(n) = u(n) if n E [1, N - 1] (26)

0 if n N

-u(2N- n) ifn [N+l,-3],
ul(n) is as defined by (25) and k(n) is an impulse response of the filter from (14). Note

that both outputs from blocks K (w) and Hs(w) are of Type II.
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The reconstruction blocks at subsequent levels can be implemented by

2i 
i

KMu(fl) - • k(i + 1)[ulii(n - 2m (i + s)) - uIII(n + 2m (i + s))], n C [0, N],
i=O

for d=l and p even, (23) with f(n) = kr(n) for d=2 and p even,

KL_1 2--

Kmu(n) = E k(i + 1)[uiv(n - 2m (i + s)) - ujv(n + 2m (i + s))], n E [0, N - 1],
i=O

for d= 1 and p odd,

gs,mu(n) = H-s,mu(n),

for p even, where u111(l) is given by (26),

-u(-n- 1) ifn E [_Y -1]

uvy(n) = u(n) if n E [0, N - 1]
-u(2N- n - 1) if n E [N, 3N],

and H_,,mu(n) is specified by Equation (24). We observe that the outputs from blocks

K~d(2mw) and Hs(2mw), m E [1, M - 1], for p even are of Type I.

When we compare the above implementation of blocks to circular convolution driven by a

mirrored signal sme(n) at the input, we observe that approximately twofold less memory

space, three to four times fewer multiplications and one half as many additions are

required. (For Type I signals an additional sample has to be stored because two values are

without a pair).

The implementation presented in this section performs all operations in the spatial domain;

however, one could also implement the structures shown in Figure 3 with an input signal

Sme(n) in the frequency domain. For short filter impulse responses, such as those given in

Tables 3, 4 and 5, the spatial implementation described in this section is certainly more

efficient. For long filter impulse responses, however, filtering is faster if implemented in the

frequency domain. Additional details on alternative FIR filter implementation strategies

can be found in [16].

Implementation of IIR filters b;'-(n) used for prefiltering and postfiltering is a bit more

involved than the one of their FIR counterparts. Fortunately, the number of different cases

is much smaller here: possible input to b;' (n) in the filter bank from Figure 3 is either of

Type II or of Type I (symmetry types for IIR filters slightly differ from those defined for

FIR filters: here, mirror extended signals are periodically repeated, so that they stretch

from -oo to co). We use ideas and a few results from [17].

23



Let us first take a closer look at the system function B1-1 (z) with p E {2, 3}. This function

can be written as a cascade of terms

1 -Q
E (z) = 1 (27)-

z -_1+_2- + z-1 (1 - az- 1)(1 - az)' (27)

which can be expressed in a parallel form as

E(z) 1= -2  1-z-1 + 1- ) (28)

where a and • are poles of the causal and the anticausal filter, respectively.

The impulse response of this term can be written as

e(n) a1 In-

We choose to implement E(z) in a cascade form and therefore extract the difference

equations from Equation (27):

c+(n)=u(n)+ac+(n-1) n = 1,2,...,N-1, (29)

and

c(n)= a (c(n + 1) - c+(n)) n = N-2, N-3,..., 0, (30)

where u(n) denotes the input to the block, c+(n) is the output from the causal part, and

c(n) stands for the output from the block.

To solve Equations (29) and (30) we need boundary conditions c+(0) and c(N-1). We

derive

0 N-1 oi+1 ± O 2N-i io

c+(0)= E c-iin(i) = u(O) + 1. -a 2N u(i) -- u(O) + L a+lu(i), (31)
i=-oo i=O i=0

and, using parallel form (28)

-a N-I oN-i + a N+I+i

c(N- 1) - 1 a2(c+(N-1) + ± 1 a2N
i=O

N-1
-1 2 (c+(N- 1) + E aN-iU(i)), (32)

i=N-l-io

where

= f u 1 1(n mod (2N)) if n > 0
I un(-(n + 1) mod (2N)) if n < 0,

f u(n) if n E [0,N- 1]
u1 (n) = u(2N - n - 1) if n E [N, 2N- 1],
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N is the length of an input signal to the filter bank, and i0 < N-1 is selected such that ac°

falls below a predefined precision threshold.

For orders p greater than three, we implement Bpi'(z) as a cascade of terms E(z) with

different a's. Note that the output from block E(z) is always of the same type as the input

to it.

2.2 Image Fusion

Image fusion combines particular aspects of information from the same imaging modality or

from distinct imaging modalities and can be used to improve the reliability of a particular

computational vision task or to provide a human observer with a deeper insight about the

nature of observed data. Whether it is combining different sensors or extending the

dynamic range of a single sensor, the goal is to achieve more accurate inferences that can be

achieved by a single sensor or a single sensor setting. By fusing together processed sections

of images, a combined image which is superior to the sum of its parts can be constructed.

The simplest method of fusing images is accomplished by computing their average. Such a

technique does combine features from input images in the fused image, however, the

contrast of the original features can be significantly reduced. Among more sophisticated

methods, multiscale and multiresolution analyses have become particularly popular.

Different pyramids [18, 19] and wavelet-based techniques [20, 21, 22, 23] have been applied

to this problem.

In Section 2.2.1, we compared an image fusion method based upon the steerable dyadic

wavelet transform with recently published fusion methods based upon the gradient

pyramid, the orthogonal wavelet transform, and the biorthogonal wavelet transform.

Section 2.2.2 then presents an application of the fusion mechanism to the problem of

mammographic feature contrast enhancement.

2.2.1 Comparison of Transforms

Gradient Pyramid

Gaussian pyramid [4] was used for construction of a gradient pyramid used in [18]. Let the

generating filter kernel for the Gaussian pyramid be

1 4 6 4 1

1 4 16 24 16 4
w(nX, ny)=wb*wb(nx, ny)= 256 6 24 36 24 6

4 16 24 16 4
1 4 6 4 1
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where wb(n,, nu) denotes the 3 x 3 binomial filter:

Wb(n.X, ny) =1_2 4 2.

Level m E N of the Gaussian pyramid for an input image matrix s(n,, ny) is then

gms(n., ny) = (w * m.-Is(n., ny)), 2 ,

with

!gos(n, ny) = s(n,, ny).

Gradient pyramid is obtained from the Gaussian pyramid as

E)Vms(n., ny) = *d * (!gms(n, ny) + Wb * gms(nx, ny)),

where

di=[1 -1],

= 0 -1d2=[ vl],1
d=[-1 ~, and

d4 =~ I 1 .V- 0 1"

An image is reconstructed from the gradient pyramid by converting the pyramid to the

Laplacian and then to the Gaussian pyramid. The Laplacian pyramid is approximated as

mC(S (n,, ny) 1_ CmS(nx, ny) + w * ICms(n.,, ny), (33)

where
1 4

JCmS((nx, ny) E di * D' sm(n., ny).

An approximation to the Gaussian pyramid is obtained by

gms(nx, ny) :L--8s(n.,, ny) + 4w * (1 -+1s(nf, ny))T2.

Note that, since the filters di have the center of symmetry between samples, they need to

be shifted for reconstruction, and that, because of the approximation (33), the gradient

pyramid does not have the perfect reconstruction property.
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Discrete Wavelet Transform

Discrete wavelet transform was implemented as a perfect reconstruction filter bank [24]. In

two dimensions, the transform is obtained by applying the one-dimensional transform

separately along each dimension. Level m e N of the transformed image matrix s(nx, ny)

is therefore

W s(n., ny) = ((Am.-iS(nx, ny) * (fl)> 2 * (ny))ý 2,

2vs(nr, n%) = ((Am.iS(nx, n%) * (n))ý2 * h(n,))ý2,

WVhs(n., ny) = ((A.m-iS(nx, ny) * h(n.))$2 * g(ny))$2 , and

AmS(nx, ny) = ((A.ls(nx, ny) * h(nx))ý2 * h(ny))ý2,

where

Aos(nr, ny) = s(nx, ny), (34)

{Wds(nx, ny), ,vVs(nx, ny), Whs(nx, ny)}me[1,M] and AMs(nx, ny) are detail and

approximation coefficients for M levels of analysis, respectively, and §(n) and h(n) are the

decomposition filters.

Reconstruction of the approximation coefficients at the previous level is given by

Am-lS(nx, ny) = ((Wd s(n., ny) )t2 * g(ny) + (VWs(nx, ny))f2 * h(ny))t 2 * 9(n.)+

+((W.h s(n., ny))T2 * (ny) + (Am.s(nx, ny) )t2 * h(ny) )t2 * h(n),

with g(n) and h(n) being the reconstruction filters.

Two-dimensional wavelets associated with separable filter banks, such as the one just

described, were constructed from tensor products of two one-dimensional multiresolution

analyses (wavelets are products of one-dimensional wavelets and scaling functions) [6].

Note also that, due to oversimplified initialization (34), the discrete wavelet transform may

be a pretty poor approximation to samples of the continuous wavelet transform.

We limited ourselves to FIR filters (i.e., compactly supported wavelets). In our

experiments, we used orthogonal wavelet transform with DAUB12 wavelet [6], and

biorthogonal wavelet transform with Bior6.8 wavelet from MATLAB Wavelet Toolbox.

Image fusion is performed in the transform space by computing local statistics across the

decomposition scales, and reconstructing from fused transform coefficients. Typical size of

neighborhood is between a single pixel and 5 x 5 area with some loss of contrast reported

for the latter [18]. In general, the chosen size of the area represents a tradeoff between

sharpness and introduction of artifacts. In order to achieve our goal of maximum contrast

with minimum artifacts, we limit the neighborhood to a single pixel (maximizing contrast)

and try to choose the most appropriate transform (minimizing artifacts).

27



Figure 5: Phantom used for comparisons of different transforms for image fusion.

After the transform decompositions of images to be fused is performed, the corresponding

transform coefficients of the images are combined according to the fusion rule into a new

set of transform coefficients from which the fused result is reconstructed. As a fusion rule,

we used the maximum magnitude rule (at each position and scale of the transforms the

coefficient with greatest magnitude is chosen) for the gradient pyramid, the orthogonal

wavelet transform (DAUB12), and the biorthogonal wavelet transform (Bior6.8), and the

maximum oriented energy rule (at each position and scale of the transforms the coefficient

with greatest local oriented energy is selected) for steerable wavelet transform [21].

Our first two experiments used the phantom shown in Figure 5. Image matrix has

dimensions 512 x 512, and fusion was performed between the original and shifted phantom.

First, the image to be fused with the one from Figure 5 was generated by shifting the
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Table 6: Performance of fusion algorithms based on four different transforms.
Transform MSE MAE
Gradient pyramid 28.66 13
Orthogonal WT 0.14 8
Biorthogonal WT 0.21 7
Steerable WT 0.05 6

phantom one sample vertically towards the top of the image. The ideal result of fusion

should contain no double lines or other artifacts (the distance between the corresponding

points in two images is one pixel, so that the algorithm should merge shifted features into a

single feature). Figure 6 shows the phantom with the surrounding area in the fused images.

The resulting images from all four transforms were clipped (pixel values above the upper

limit of the gray level range were mapped to white) rather than scaled. Please note the

artifacts present when the orthogonal and biorthogonal wavelet transforms were used. The

latter produced a slightly better result, although artifacts due to aliasing and tensor

product representation made both fused images unacceptable.

Our second experiment differed from the first one only in the fact that the phantom from

Figure 5 was shifted by five samples. Here, the shift is large enough that features from

both images may be present in the fused image. The phantom with its surroundings in the

results of fusion using the four transforms is demonstrated in Figure 7. Please note that

the situation is similar to the one in the first experiment. Both orthogonal and

biorthogonal wavelet transforms exhibited obvious artifacts, while the redundant gradient

pyramid and steerable dyadic wavelet transform performed well.

The third experiment was geared towards a quantitative comparison of the four transforms

for image fusion. Similar to [22], we blur different parts of the image and then fuse them in

such a way that each blurred part is fused with its original counterpart. The ideal result of

fusion would be the original image. Figure 8 shows the original 512 x 512 mammogram,

100 x 100 area of interest, and two blurred images to be fused. Mean-square error (MSE)

and maximum absolute error (MAE) between the result of fusion and the original image

were computed for all four methods. Table 6 summarizes the results. Let us remark that

these results are rather typical; on a variety of images, wavelet based methods were very

close, while consistently outperforming the gradient pyramid according to the two criteria.

No significant artifacts were noticed in the "blurring experiments." By comparing the

extracted regions with the original ones, we subjectively rated the transforms used for

fusion as: (1) steerable dyadic wavelet transform, (2) biorthogonal wavelet transform, (3)

orthogonal wavelet transform, and (4) gradient pyramid. Again, the differences between

different types of wavelet transforms were minor, whereas the gradient pyramid lagged
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(a) (b)

(c) (d)

Figure 6: Image fusion of phantoms shifted by one sample. (a) Gradient pyramid. (b)
Orthogonal wavelet transform. (c) Biorthogonal wavelet transform. (d) Steerable dyadic
wavelet transform.

30



- -l/|

(a) (b)

- m•

(c) (d)

Figure 7: Image fusion of phantoms shifted by five samples. (a) Gradient pyramid. (b)
Orthogonal wavelet transform. (c) Biorthogonal wavelet transform. (d) Steerable dyadic
wavelet transform.
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(a) (b)

(c) (d)

Figure 8: (a) Mammogram with area of interest delineated. (b) Area of interest. (c) Image
from (a) with left half blurred. (d) Image from (a) with right half blurred.
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behind. Regions of interest corresponding to the one from Figure 8(b) are shown in Figure

9. Wavelet based methods produced results that are visually close to the original region,
gradient pyramid, however, caused loss of sharpness.

2.2.2 Fusion of Enhanced Features

Existing methods of mamnmographItc image enhancement can be divided roughly into two

categories: (1) methods aimed at better visualization of all features present in the image

[25, 26, 27, 28], and (2) methods that target specific features of importance (e.g.,
microcalcifications [29, 30], stellate lesions [11]).

Methods from the first category are not optimized for a specific type of cancer and

frequently not even for mammography. Rather, they try to improve the perceptual quality

of the entire image and are often developed with a framework more general than

mammography alone in mind.

The second category methods concentrate on revelation of particular signs of malignancy.

They can be very successful in their area of specialization; however, in order to process

mammogram for presence of various features, one would need to apply different algorithms

independently resulting in both larger number of images to be interpreted by a radiologist

and increased computational complexity of such a procedure.

Here, we present an approach which overcomes these shortcomings and problematic

limitations via synthesis of the two paradigms by means of image fusion.

The goal of our method is to adapt specific enhancement schemes for distinct

mammographic features, and then combine the set of processed images into an enhanced

image. The input mammographic image is first processed for enhancement of

microcalcifications, masses, and stellate lesions. From the resulting enhanced images, the

final enhanced image is synthesized by means of image fusion. Wavelet based image

enhancement and fusion are merged into a unified framework, so that there is no need for

carrying out the two operations independently (i.e., computing wavelet decompositions,
modifying wavelet coefficients for enhancement of specific features, reconstructing the

enhanced images, performing wavelet transforms of the enhanced images, fusing transform

coefficients, and obtaining the final result by reconstruction from fused wavelet

coefficients). Both enhancement and fusion are therefore implicit (i.e., performed in the

wavelet domain only). Figure 10 presents a block scheme of the overall algorithm.

The algorithm consists of two major steps: (1) wavelet coefficients are modified distinctly

for each type of malignancy; (2) the obtained multiple sets of wavelet coefficients are fused

into a single set from which the reconstruction is computed. The devised scheme allows

efficient deployment of an enhancement strategy appropriate for clinical screening
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(a) (b)

(c) (d)

Figure 9: Region of interest corresponding to the one from Figure 8(b) extracted from the
fused images using: (a) gradient pyramid, (b) orthogonal wavelet transform, (c) biorthogonal
wavelet transform, and (d) steerable dyadic wavelet transform.

34



Wavelet
FmicrosO Coefficients

(micros)

InutWaelt FmassesO Coefficients C
Mammogram Decomposition [•(masses) Coeffic~ients_ Mammogram

S~Wavelet

FstellateO Coefficients

(stellate)

Figure 10: Overview of the algorithm.

protocols: enhancement algorithm is first developed for each specific type of feature

independently, and the results are then combined using an appropriate fusion strategy.

The structure of the algorithm also enables independent development and optimization of

enhancement strategies for individual mammographic features as well as the fusion module.

Microcalcifications

Microcalcifications appear on mammograms in approximately half of breast cancer cases.

The assessment of shape, number, and distribution of microcalcifications is important for a

radiologist to reach the correct diagnosis. Microcalcifications are smaller than 1 mm in size

and can be difficult to locate when they are superimposed on dense breast tissue.

Several techniques have been developed to improve the visibility of microcalcifications

[29, 30, 31, 32]. The approach devised by Strickland and Hahn [29] is particularly well

suited for our framework: they used an undecimated wavelet transform to approximate

second derivatives of a Gaussian probability density function for a multiscale matched

filtering for presence of microcalcifications.

Strickland and Hahn based their method on the observation that the average

microcalcification can be modeled by a circularly symmetric Gaussian function. Using a

combination of a separable Markov process with autocorrelation r,, = a2e--'Vk 1  and a

nonseparable Markov process with autocorrelation r,, = a2e-QVk2+- to represent

mammogram texture, they obtained the separable matched filter

Msep(Wx, WY) = M(wX)M wY), (35)

where
N/ffw 2 ~2W2

Me 2
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and the nonseparable matched filter

7 1r o2 2 w ) ,2 2 ,2

Mnsep(w x,Wy) 2 -(w + wY)e0 2 (36)
o'n

In order to deal with different sizes of microcalcifications, one must vary o of matched

filters (35) and (36) appropriately. In Strickland and Hahn's scheme, a wavelet

decomposition was chosen to approximate the matched filters across the desired scale

range. Considering the 100/[m resolution of the Nijmegen database, the wavelet transform

was computed over the first 4 octaves. For a denser sampling of scale, voices were inserted

at octaves "2.5" and "3.5." The wavelet analysis stage acted as a bank of matched filters;

wavelet coefficients at locations indicating microcalcifications were multiplied by a gain

factor, and then the inverse wavelet transform was applied to the modified coefficients.

In our approach, microcalcifications are modeled by central B-splines. Using the relation

between the standard deviation of a Gaussian function and the order of B-splines that

approximate it a = ' [33], the assumption that a Gaussian object is visible

approximately over ±u~ pixels [29], and the fact that the mammograms in the University of

Florida database were digitized at 116/Lm resolution, four levels of the transform from

Section 2.1 with, for example, p=3 are needed to encompass different sizes of

microcalcifications. The wavelet decomposition including voices at scales 3 and 6

(corresponding to Strickland and Hahn's octaves "2.5" and "3.5") can be obtained by

deriving a counterpart to Equation (18) for the two scales.

ýp(3w) can be related to /P(w) by expressing /i(3w) as (cf. Proposition 1 of [34])si ( si 2
/•p( 3 P+- 1 /sin() 2~ 2_) +

• M+I~

Using M 0 ei(mw+o) S_. I( eL2-1) (+O) we get
2

SA=

where

V(W) G (e- + 1 +.

Filter V(w) can be implemented as a moving sum with 2 (p+l) additions per sample and a

multiplicative factor 1 applied to the wavelet coefficients [34].

Next, P/(6w) is expressed by means of Equation (17):

Pp(6w) = H-,(3w)/Pp(3w)
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with odd orders p used for the sampling shift s to be zero.

Now, we can write

Yf: W3sx y)x=nx,y=ny } X•-- S(wý,, wy) Brl(w.,) Br-l(wy) Bp+,+i+l (wx)"

•Bp+r+d-i+l(wy) G i (3wx) G', (3wy) V (wx) Vp+di (y) (37)

and

.F{~sx, ) __ ~S(w., wy) B-1 (cox) B,-'(wy) Bp+r+i+i (wx)

"Bp+r+d-i+l(wy) Gd-S (6wx) G-'- (6wy)p+H (3 w-) y-(3)yP+iV'r (w')Vp+d-i( y) (38)

with notation being the same as in Equation (18), and superscript p in H!,(w) denoting

the order p in Equation (16).

Wavelet coefficients obtained via Equations (37) and (38) are not used for

reconstruction-the inverse transform is carried out as given in Section 2.1.

The decomposition described by Equations (18), (37), and (38) with additional filtering by

G2 (lw) at each scale 1 E {1, 2, 3, 4, 6, 8} enables approximations to the second derivatives of

Gaussian along both x and y directions and to Laplacian of Gaussian across distinct scales

employed by Strickland and Hahn [29] (cf. Equations (35) and (36)). We proceed in a

similar fashion as therein: the two outputs per scale are thresholded independently, all

binary results are then combined, a circular region centered at detected pixel locations are

next multiplied by a gain, and, finally, the reconstruction process uses modified transform

coefficients.

Circumscribed Masses

Almost half of missed cancers appear on mammograms as masses. Perception is a problem

particularly for patients with dense fibroglandular patterns. The detection of masses can

be especially difficult because of their small size and subtle contrast compared with normal

breast structures.

Fan and Laine [26] developed a discrete dyadic wavelet transform based algorithm suitable

for enhancement of masses. They constructed an approximation to Laplacian of Gaussian

across dyadic scales for an isotropic input to a piecewise linear enhancement function.

Approximation to Laplacian of Gaussian across dyadic scales is easy to obtain using

multiscale spline derivatives derived in Section 2.1: Equation (18) with i= 0 and i = 2

approximates the second derivative of a Gaussian function along directions of x and y axis,

respectively (the corresponding branches in Figure 3(c) are the first and third from the

top). The appropriate transform coefficient at each dyadic scales are therefore added and
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used at each level m±1 of the transform separately. Due to the expected size of masses,
levels greater than 4 are enhanced more aggressively.

Figure 11 shows the enhancement function from Equation (39) for parameter values

K = 20 and T = 1.

The multiplicative factor obtained as the ratio between the output and input of the

enhancement function is next applied to the original wavelet coefficients [26], and then the

reconstruction (Figure 3(b) and (d)) is carried out.

Figure 12 shows the cranio-caudal view of a patient with bloody nipple discharge. On the

enhanced image cropped to the area of interest, irregular anterior borders of a mass are

better seen.

Stellate Lesions

It is important for radiologists to identify stellate lesions since their presence is a serious

indicator of malignancy. Stellate lesions vary in size and subtlety and, in addition, do not
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(a) (c)

Figure 12: Contrast enhancement of the cranio-caudal of a patient with bloody nipple dis-
charge. (a) The original mammogram with area of interest delineated. (b) Unprocessed
extracted area. (c) The enhanced area improves the visualization of the mass.
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have a clear boundary, making them difficult to detect.

In the development of our algorithm, we follow an observation made by Kegelmeyer et al.

about the distortion of edge orientation distribution induced by a stellate lesion [35].

Normal mammograms show a roughly radial pattern with structure radiating from the

nipple to the chest wall. A stellate lesion not only changes this pattern, but also creates

another center from which rays radiate. Directional analysis using the Sobel edge operator

was employed for assessment of local orientations [35].

Wavelet transform from Section 2.1 enables directional analysis as well. By adding

additional filter Gl,(2mw) to each scale of decomposition from Figure 3, approximations to

both first and second steerable derivatives of a Gaussian are available. A multiscale

derivative-pair quadratic feature detector is computed by finding the maximum of the local

oriented energy with respect to angle 0
E m(_ y) = y)) 2 + y)) 2,(40)

where Wlmos(x, y) and W2m.s(x, y) denote wavelet decompositions using first (Equation

(6) with d= 1) and second (Equation (6) with d= 2) derivative wavelet, respectively,

steered to angle 0. The angle that maximizes the local oriented energy (40) represents

orientation at pixel location (x, y).
Similarly to the method for enhancement of microcalcifications, processing is carried out

within windows with scale dependent sizes: 1-norm of differences between the local and

average orientations is computed in the window and used as a measure of orientation

nonuniformity. Soft thresholding as a function of the orientation nonuniformity measure is

next applied to the transform coefficients at each dyadic scale independently [11]. The

altered coefficients are then included for reconstruction.

Figure 13 shows the oblique view with a mass visible in the mid-posterior breast. The

enhanced image demonstrates the irregularity and spiculation of the mass.
Image fusion of the outputs from the three modules is implicit rather than explicit: wavelet

transform coefficients are first modified for enhancement of microcalcifications,

circumscribed masses, and stellate lesions, and then the new coefficients are obtained by

fusion before the reconstruction is accomplished.

Note also that it is possible to put different weights on features, and exclude certain

features from the final result.

2.3 Evaluation

In order to evaluate the contrast enhancement ability of the developed scheme, we compare

the performance of the wavelet-based algorithm described in previous sections to results of
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(a) (c)

Figure 13: Contrast enhancement of the oblique view. (a) The original mammogram with
area of interest delineated. (b) Unprocessed extracted area. (c) The enhanced area improves
the visibility of the mass.
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histogram equalization and unsharp masking.

Histogram is defined as a plot of gray level probabilities versus gray level values in an

image. The technique of obtaining a uniform histogram (i.e., uniform gray level

distribution) by reassigning gray level values is known as histogram equalization [36]. It is

attractive due to its speed and simplicity; however, quantization errors can result in

artifacts such as loss of edges [26].

Unsharp masking is based upon smoothing an image with a lowpass filter and then

subtracting a fraction of the filtered result from the original image [37]. To better preserve

edges in the enhanced image, the median filter is a popular choice for the smoothing filter.

2.3.1 Image Phantoms

We conducted a set of experiments using computer simulated phantoms similar to the ones

generated by Xing et al. [38].

The phantoms consisted of a 505 x 505 image matrix with 8 bits per pixel (i.e., 256 levels

of gray) divided into 25 (5 x 5 grid) 101 x 101 pixel squares. Twelve randomly distributed

squares contained a truncated Gaussian shaped signal with the peak signal intensity I

(15 < I < 35) levels above the background level and the radius of the signal set to 25

pixels. Random Gaussian noise with the mean value of 128 and the standard deviation a

(20 < a _ 80) was added to the image matrix. Figure 14(a) demonstrates a distribution of

signal squares within the phantom, and Figure 14(b) shows the phantom with noise.

By choosing different values of the peak signal intensity and of the noise variance we can

alter the visibility of the Gaussian signals. In the course of experiments with different peak

signal intensities and noise variances, we compared the ability of the three contrast

enhancement methods to improve the visibility of signals embedded in noise. We adopted

quantitative criteria for measuring the performance of contrast enhancement algorithms

employed by Xing et al. [38]-the enhancement factor EF was given as the ratio between

the output and input contrast-to-noise ratio

EF - CNRo
CNR1 '

where the contrast-to-noise ratio CNR was defined as the ratio between contrast

1 (S5, Bm)
C=Mss"" Pm

rn=1

and noise
1 M"

N=M E UBm

" m=1
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(a) (b)

Figure 14: Generation of image phantoms. (a) A distribution of truncated Gaussian signals.
(b) A phantom obtained by adding noise to the image from (a).

with Sm and Bm denoting the gross count over circular signal area in signal and

background squares, respectively, &m standing for the number of pixels in the m-th signal

area, M8 being equal to the number of squares containing the signal, and 0
*Bm meaning the

standard deviation in the circular area over which Bm was computed.

Phantom images were generated using the sets of values I = {15, 25, 35} and

a = {20, 30,40, 50, 60, 70, 80}, and contrast C and noise N were computed for both the

phantom images and enhanced images obtained via the three methods. These numerical

results are summarized in Table 7.

The behavior of the three methods in this experimental setup was quite different.

Histogram equalization proved to be the most sensitive to the level of noise. In general it

resulted in the largest contrast improvement among the three; however, it also increased

the level of noise the most. The resulting contrast was inversely proportional to the level of

noise, and, interestingly, the noise after enhancement was pretty much independent of noise

in the input image. It is worth mentioning that in low to moderate noise conditions the

numbers in Table 7 do not convey observers' perceptual experience faithfully; histogram

equalization made objects more visible while noise, although increased, was still acceptable

to viewers.

Unsharp masking, on the other hand, was not able to increase contrast, but it dealt well

with noise. Except for the lowest noise cases, it always resulted in less noise in the enhanced
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image. The combination of loss of contrast and marginal noise improvement, however,

resulted in worse visibility than in the original images. This is no surprise considering the

nature of the experiment: the Gaussian shaped objects are comprised primarily of lower

frequencies while unsharp masking was designed to emphasize higher frequencies.

The wavelet transform based approach was the only one that resulted in enhancement

factors greater than one. It was consistently improving contrast and generally lowering the
amount of noise. High noise cases were the ones where this method really shined while at

low levels of noise, the noise was, as in unsharp masking, amplified in the enhanced image.

The method did no good when the signal was strong and noise marginal (I = 35, o = 20),
and such conditions also produced the worse enhancement factor in histogram equalization.

Figure 15 displays an example of moderately visible objects. It can be observed that

histogram equalization improved visibility despite its enhancement factor being below one,

unsharp masking resulted in less noise but less contrast as well, and wavelet transform
yielded the best results. The same signal constellation was used in Figure 16. Here, one

can hardly notice any signal activity in the original or the histogram equalized image, while

the wavelet transform based method brings out the signal areas nicely.

Please note that the probability density functions for signals and noise in these image
phantom are not only known but also very simple. None of the tested methods is taking

advantage of this fact; however, it would be easy to devise one and achieve the best results

for this particular set of experiments. Such limiting the scope of a method, of course,

would be diverting from the original goal-enhancement of mammographic features.

2.3.2 Phantoms Blended Into Mammograms

To compare the performance of histogram equalization, unsharp masking, and wavelet

based enhancement on mammographic images, we constructed three mathematical models

of phantoms similar in appearance to the ones used by Chang and Laine [39] and Laine et
al. [25]. The models including features found in circumscribed masses, spiculate lesions,

and microcalcifications are shown in Figure 17.

These models of varying intensity, size, and rotation were blended into mammograms to be
processed by the three enhancement techniques under comparison. Quantitative metric for

assessing the performance of the techniques was adopted after Laine et al. [25]: a contrast

improvement index

Cprocessed
Coriginal

was computed between the processed and original contrast in the rectangular region of

interest snugly fitting a phantom.
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(a) (b)

(c) (d)

Figure 15: Image phantom contrast enhancement. (a) Image phantom (I = 35, o = 40). (b)
Histogram equalization. (c) Unsharp masking. (d) Wavelet transform based enhancement.
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(a) (b)

(c) (d)

Figure 16: Image phantom contrast enhancement. (a) Image phantom with the same signal
constellation as in Figure 15 (1 = 15, a = 60). (b) Histogram equalization. (c) Unsharp
masking. (d) Wavelet transform based enhancement.
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Figure 17: Mathematical phantoms that were blended into mammographic images.

The contrast was defined as cf-b
0 +b

with f and b denoting foreground (i.e., phantom pixels) and background (i.e., pixels in the

rectangular area surrounding the phantom), respectively.

Note that the input (reference) mammograms for this set of experiments were obtained by

applying contrast stretching to digitized mammograms. The reason for this is that we

wanted to avoid a commonly used "trick" in presenting the results of enhancement: original

mammograms that occupy only a portion of the available dynamic range are left as they

are while the enhancement algorithm output utilizes the entire dynamic range. We level the

playing field by forcing the same dynamic range upon both original and enhanced images.

The right cranio-caudal view of Figure 18 shows a circumscribed mass phantom blended

near the upper left corner of the image of matrix size 1553 x 2048 while the original and

enhanced region of interest of size 121 x 121 are displayed underneath it.

On the oblique medio-lateral view presented on Figure 19 of the same size, blended

microcalcifications phantom slightly up and left from the center of the film is practically

invisible. The 81 x 81 region of interest is used to compare the outputs of the three

contrast enhancement methods.

Finally, Figure 20 presents an example of a spiculate lesion phantom enhancement. The

phantom is too thin to be visible in the upper right corner of the mammographic image of

size 1553 x 2048, but it does appear on the extracted 81 x 81 region of interest from the

original and the enhanced images.

Comparison of the enhancement methods by means of both visual appearance and

quantitative criteria demonstrated that the wavelet based approach outperformed

histogram equalization and unsharp masking. The CII values given in Tables 8, 9, and 10

for different mammograms, phantom intensities, sizes, and orientations show that
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(a)

(b) (c) (d) (e)

Figure 18: Contrast enhancement of a mass resembling phantom. (a) Original mammogram
with a phantom blended near the upper left corner. (b) Region of interest from the original
mammogram. (c) Histogram equalization. (d) Unsharp masking. (e) Wavelet transform
based enhancement.
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(a)

(b) (c) (d) (e)

Figure 19: Contrast enhancement of a microcalcifications resembling phantom. (a) Original
mammogram with a phantom blended slightly up and left from the center of the film. (b)
Region of interest from the original mammogram. (c) Histogram equalization. (d) Unsharp
masking. (e) Wavelet transform based enhancement.
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• it

()(c) (d) (e)

Figure 20: Contrast enhancement of a microcalcifications resembling phantom. (a) Original
mammogram with a phantom blended slightly up and left from the center of the film. (b)
Region of interest from the original mammogram. (c) Histogram equalization. (d) Unsharp
masking. (e) Wavelet transform based enhancement.
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Table 8: Contrast enhancement of circumscribed mass phantoms by means of histogram
equalization (HE), unsharp masking (UM), and wavelet transform (WT).

Case CIIHE CHUM CIIWT

1 1.6917 1.4749 2.4790
2 0.6368 0.5615 2.5695
3 1.1028 0.5702 2.9598
4 0.7780 0.5644 3.5478
5 2.1308 0.4583 1.5779
6 0.6249 0.6345 3.0910
7 1.9501 1.2311 2.6068
8 1.4860 0.8913 2.7621
9 1.4565 1.0185 1.8214

10 0.9218 0.7382 2.1763

Table 9: Contrast enhancement of circumscribed mass phantoms by means of histogram
equalization (HE), unsharp masking (UM), and wavelet transform (WT).

Case CIIHE CHuM CIIWT

1 0.5335 1.3471 3.0844
2 1.1018 0.9552 2.4362
3 1.8519 0.8615 2.3966
4 0.9553 0.9345 2.3869
5 1.4057 0.9355 2.9169
6 1.4103 0.8936 3.0579
7 1.3529 0.8132 3.0099
8 1.1389 1.2028 3.1987
9 0.6038 1.2722 2.7468

10 1.4451 1.4660 3.4186

histogram equalization outperformed wavelet transform based enhancement in certain

situations. This is due to the fact that the phantom has basically no effect on the gray

level distribution, and its gray levels sometimes simply got quantized to high enough a

value for a significant contrast improvement. More than inconsistency of histogram

equalization is worrisome its tendency to introduce artifacts. This was particularly obvious

in enhancement of microcalcifications phantoms; as exhibited in Figure 19(c), the circles

were completely distorted. Unsharp masking was both consistent and artifact free, but

unfortunately resulted in least enhancement. It seems that the images were too complex

and the phantoms too subtle for unsharp masking to make a difference.
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Table 10: Contrast enhancement of spiculate lesion phantoms by means of histogram equal-
ization (HE), unsharp masking (UM), and wavelet transform (WT).

Case CIIHE CHUM CIIwT
1 2.3008 1.3125 3.3071

2 1.8462 1.2026 2.6721
3 0.8381 1.0196 1.8813
4 1.3795 0.8318 2.5028
5 1.7095 1.4289 2.3046
6 2.1897 1.1934 1.9822
7 1.3028 0.5417 2.1509

8 2.6979 1.3784 2.8600
9 2.8537 0.5936 2.4966

10 0.8998 0.8216 2.6449
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3 Key Research Accomplishments

" A redundant wavelet transform that enables artifact-free translation and rotation

invariant processing was constructed and efficiently implemented as a bank of digital

filters.

"* A modular scheme for fusion of locally enhanced mammographic features was devised

such that enhancement algorithms targeting specific features can be further

developed and optimized separately from the fusion mechanism.

"* The derived wavelet transform proved to be more suitable for image fusion than

traditional orthogonal/biorthogonal wavelet transforms and image pyramids.

"* Quantitative evaluation gave the wavelet based enhancement technique an edge over

histogram equalization and unsharp masking while at the same time no harmful

artifacts emanating from the wavelet method were observed.
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4 Reportable Outcomes

Publications

[1] I. Koren, A. Laine, S. Smith, E. Nickoloff, and F. Taylor, "Visualization of

mammograms via fusion of enhanced features," in K. Doi, H. MacMahon, M. L. Giger, and

K. R. Hoffmann, Eds., Computer-Aided Diagnosis in Medical Imaging, Amsterdam, The

Netherlands: Elsevier, 1999.

[2] I. Koren, A. Laine, and F. Taylor, "Enhancement via fusion of mammographic features,"

in Proc. IEEE Int. Conf. Image Process., Chicago, Il, Oct. 1998, vol. 1, pp. 722-726.

[3] I. Koren and A. Laine, "A discrete dyadic wavelet transform for multidimensional

feature analysis," in M. Akay (Editor), Time-Frequency and Wavelets in Biomedical Signal

Engineering, New York, NY: IEEE Press, 1998, pp. 425-449.

[4] I. Koren, A. Laine, and F. Taylor, "An overcomplete enhancement of digital

mammograms," Era of Hope, A Multidisciplinary Reporting of DoD Progress, Washington,

D.C., Oct.-Nov. 1997, vol. 1, pp. 107-108.

[5] A. F. Laine, I. Koren, S. Schuler, W. Huda, and B. G. Steinbach, "Contrast

enhancement of mammographic features via multiscale analysis," RSNA 82nd Scientific

Assembly and Annual Meeting, Chicago, IL, 1996.

Funded Research

National Cancer Institute, National Institutes of Health, "Athena Mammographic

Technology," 1999 to 2000, $125,000; Iztok Koren, Principal Investigator.
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The Athena Group, Inc., Gainesville, FL. Iztok Koren, development of mammographic

image manipulation and enhancement system.

55



5 Conclusions

In the course of this project, we developed a method that improves the visibility of specific

mammographic features by local enhancement and fusion of the enhanced areas. The

described method incorporates a variety of properties of mammographic image

enhancement methods tailored to specific signs of malignancy into a unified computational

framework.

Our method is based upon a wavelet transform which we constructed such that its analysis

stage enabled approximations to directional first and second derivatives of a Gaussian

function and to Laplacian of Gaussian across distinct scales. Such a decomposition is

suitable for both anisotropic and isotropic multiscale analysis, and, in addition, provides an

adaptable framework for incorporation of a variety of mammographic processing methods.

The derived steerable dyadic wavelet transform has also proved flexible enough for

enhancement and fusion of individual types of mammographic features. Separate

enhancement algorithms have been developed for microcalcifications, circumscribed masses,

and stellate lesions, and fusion of the modified transform coefficients performed before the

reconstruction of the final enhanced image. The devised algorithm is also well suited for

further refinements; optimizations can be performed for each type of malignancy alone, and

separately for the fusion module.

It is of prime importance that neither the enhancement nor the fusion process introduce

any artifacts that could adversely impact the radiologists' decisions. We compared the

steerable dyadic wavelet transform with the gradient pyramid, orthogonal wavelet

transform, and biorthogonal wavelet transform for fusion of features relevant to

mammography. During our experiments, the steerable dyadic wavelet transform was

exhibiting a combination of best properties of the gradient pyramid and of the

orthogonal/biorthogonal wavelet transform. The steerable dyadic wavelet transform

behaved similarly as the gradient pyramid in a sense that it did not introduce artifacts

commonly present when the orthogonal and biorthogonal wavelet transforms were used. At

the same time, the steerable dyadic wavelet transform outperformed the gradient pyramid

by acting like the orthogonal and biorthogonal wavelet transforms in terms of

mathematical criteria and sharpness in the fused image.

Our final task was evaluation of the developed wavelet based enhancement method. We

adopted quantitative criteria to measure the performance of our contrast enhancement

technique on simulated phantoms embedded in noise and on mammographic feature

phantoms blended into mammograms. The wavelet based method outperformed histogram

equalization and unsharp masking with respect to both quantitative criteria and absence of
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undesirable artifacts.

This work represents an important step towards development of a system which can be

deployed in a clinical setting. In order to get closer to that goal, a receiver operating

characteristic (ROC) study which was unfortunately beyond the scope of this project will

have to be carried out.
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